杏彩体育官网登录注册入口


NEWS CENTER

详细内容

杏彩体育网页大功率电机驱动器应用的系统设计注意事项

  应用范围广泛,从数百瓦的低压系统(例如 12V 汽车电动座椅)到数千瓦系统(例如 60V 和 100A 电动工具)。通常,这些系统使用基于分流器的电流检测和控制大功率 MOSFET 的非隔离栅极。虽然这些应用可以由电池或转换为直流的网格化交流电源供电,但它们都有一个共同的目标,即稳定可靠并针对由击穿、短路、过流、MOSFET 反向恢复或 PCB 寄生电感行为引起的大电流和高电压事件提供保护。

  例如,电动工具具有用于工业和家庭用途的高额定功率,例如钻孔、研磨、切割、抛光、驱动紧固件等。要求包括:

  在设计大功率系统时,这些要求会相互冲突,需要权衡。对于电动工具,大电流、效率和热性能会随着电路板尺寸的增大而增加,这与外形小巧和需手持的需求相冲突。

  因此,大功率设计非常重要。与电磁干扰 (EMI) 的情况一样,针对大功率应用进行设计是一个决策和规划过程,以减轻可能发生或可能不会发生的问题。

  令人惊讶的是,糟糕的大功率设计并不总是会导致电气火灾或冒烟。结果是产生了一个频谱。对于电气火灾,结果可能在一瞬间发生,造成灾难性电路板损坏,因此电机仅运转一次寿命就终结了。这表明设计存在根本性问题,或者正常运行的某些方面被放大了。因此,可以减少或减轻设计的某些方面,控制损坏源并减少其对系统的负面影响,从而将损坏概率降至可以忽略不计的水平。

  在其他情况下,电机会旋转,当命令电机提供更多电流时,电机可能发生损坏,或停止旋转。运行方式的变化对系统产生的压力超出它的承受能力。在更困难的情况下,电机将以相同的电流或速度旋转一百个小时,但在测试结束前几分钟就会出现故障。这可能意味着特殊用例可能会导致设计失败,或者随着时间的推移,正常运行可能会导致设计损坏,直到发生永久性和可观察到的故障。

  了解设计人员可以通过频谱中的差异知道需要进行什么样的更改才能修复或防止损坏。就像损坏频谱一样,从更换物料清单上的元件到完全重新设计原理图和布局,更改频谱也各不相同。

  此示例涵盖了一个假设,并使用大功率设计原理来改进大功率电机驱动器应用。请注意,此示例用于说明如何利用该过程,应用手册的其余部分解释了选择最终实际使用的过程所依据的理论。

  检查给定内容,系统存在根本问题。在这种情况下,故障排除的下一步必须是验证栅极驱动电路的功能。

  • 仅在尝试切换低侧并查看标准后才施加 nFAULT 信号,低侧发生 VGS 故障,这意味着在切换输入低侧栅极信号后,栅极电压没有上升到预期电压

  栅极到源极之间的短路似乎表明问题出在电压电感尖峰上,因为可能已经超过绝对最大限值。在较低电流电平下没有发生损坏进一步支持了这一观点。此外,如果损坏主要发生在单个相位,这表明可能存在布局未优化,并且可能正是这一点导致了问题发生。

  – 这使系统能够耐受 30A 电流,但由此产生的 VDS 信号和栅极的上升和下降时间对于应用来说太长了。如果上升和下降时间可以接受,那么问题到这里就解决了。

  • 通过在 20A 的低侧栅极和源极电压上使用示波器探头,波形显示低侧源上存在负电压尖峰,该尖峰接近但不超过 DRV835x 100-V三相智能栅极驱动器 数据表中定义的绝对最大限值。

  – 这便产生了以下假设:这些尖峰会随着电流的增加而变得更糟,最终会超过绝对最大额定值有一些指标表明低侧源极和栅极的负尖峰是问题所在,可以采用以下几种解决方案进行处理:

  • 分析受到损坏的相位周围的布局并对其进行改进,特别是 GND 和检测电阻路径评估哪种解决方案能够解决问题。为避免重新设计电路板,最佳做法是查看物料清单的变化或填充先前已取消填充的元件。

  • 存在高侧漏极到低侧源极电容器的位置,但未填充,因此添加电容器即可解决问题,而无需重新设计,同时也不会降低栅极驱动电流。

  本应用手册将此过程拆分为开发故障排除指南、外部电路库、TI 驱动器产品特性或布局技术,以应对更大功率系统的易失性。

  在开发故障排除指南、外部电路库、TI 驱动器产品特性或布局技术之前,必须了解典型的栅极驱动器系统及其子功能。

  首先来看图 2-1 的右侧部分,可以看到电机驱动器功率级(也被称为逆变器、相位或半桥)的一项功能是向电机输送电流。分解为几个最简单的部分,假设低侧 FET 关闭,电流从 VDRAIN 流经高侧 FET 并进入电机。或者,如果低侧 FET 导通,而高侧 FET 关闭,则电流从电机流出并通过低侧 FET 到达 GND。在千瓦电机驱动应用中,会有高达数百安培的电流流经这些 FET。

  再来看看图 2-1 的左侧部分,可以看到功率级的另一项功能是将数字逻辑 PWM 输入信号(例如 INHx 和 INLx)转换为更高模拟电压电平的信号,例如 24V 或 48V。这样,功率级的一部分就是为了实现从数字电平信号到模拟电平信号的电压转换。此外,通常情况下,从提供的电机驱动器电源电压产生电压轨以转换模拟电压电平是电机驱动器的一项功能。这些模拟电压可能高于 VDRAIN 或系统中的最高输入电压。因此,使用线性稳压器、电荷泵或自举架构来实现这些电压(例如,VCP 和 VGLS)。

  然后来看图 2-1 的中间部分,可以看到功率级的另一个次要功能是调节或控制 FET 栅极上的信号。MOSFET 可以作为开关、电阻器或电流源(这取决于与漏极和源极电压相关的栅极电压),因此必须控制和监控 FET 的所有电压。保护、信号调节技术和专用电路都属于此功能。

  故障排除过程的第一步是了解损坏发生的位置。检查功率级的功能,以评估在发生损坏后是否有任何功能不再按预期工作。

  对于向电机输送电流的情况,请使用数字万用表 (DMM) 并在 FET 的漏极和源极之间或 VDRAIN 和 SHx 之间执行阻抗检查,如图 2-1 所示。当未通电时,漏极到源极路径预计为高阻抗(即 kΩ),因此低阻抗表明 FET 和电流传输路径已损坏。对于更麻烦的故障排除,在转换过程中使用示波器探测 FET 的栅极电压、漏极电压和源极电压,以检查稳定性和信号上的振铃量。

  在进行电压转换时,使用 DMM 并在栅极信号和栅极电压电源(例如 VGLS、VCP 或 GND)之间执行阻抗检查,如图 2-1 所示。这些路径应为具有容性负载的高阻抗。低阻抗表示发生损坏(即几个欧姆)。若要进行更深入的故障排除,请在运行期间使用示波器电压探头检查电源电压的稳定性。

  对于调节或保护栅极信号的情况,请使用 DMM 或 LRC 表并对路径中的元件进行阻抗检查,以确保无源器件没有损坏。一种简单的做法是,仅将读取值与原理图中列出的预期值进行比较,从而检查有无损坏。

  需要注意的是,大多数电机驱动器将这些功能集成到一个器件或单个芯片上。因此,这些集成栅极驱动器中的大多数都能够监控和检查这些功能,并通过某种 FAULT、WARNING、LOCK GPIO 信号或可读寄存器通知设计人员。如果 nFAULT 信号被置位,那么了解 nFAULT 信号被置位的原因以及触发哪个故障至关重要。每个故障的标准通常在数据表中提供。更重要的是,如果可以重置 nFAULT 信号,则可以使用示波器电压探头监测该信号,并将其用作下降沿触发器以捕获其他信号,例如 FET 栅极、源极或漏极电压。

  幸好,大功率设计一般不是出错之后开展的补救性实验。如前所述,可以采取一些措施来缓解潜在问题。

  这些操作可能会改变电路板架构或栅极驱动器运行方式,从而增加对元件或电路板面积的需求。因此,需要在实现每个可能的操作和考虑真实系统的重要需求之间进行权衡,这正是大功率设计的艺术。

  如前所述,MOSFET 的漏极和栅极电流是向电机供电的基石。为了提供电流并打开 FET,必须在 MOSFET 的本征栅极电容器上积累电荷。此过程在 MOSFET和 IGBT栅极驱动器电路的基本原理 和了解智能栅极驱动 应用手册中进行了更详细的解释。

  因此,将栅极电荷或电流的速率与 FET 漏极至源极电压上升联系起来,如理想的一阶方程式 1 所示

  根据方程式 1,高 IDRIVE 和小 Qgd 会导致非常快的压摆率,因为 VDRAIN 在系统中通常是固定的,除非系统电源电压专门设计为可变电压。高压摆率会降低 MOSFET 中的开关损耗,因此使压摆率尽可能高似乎是有益的。但是,大多数设计人员试图使用更高的压摆率,却没有意识到使用超出设计值太多的压摆率会产生不利影响。

  遗憾的是,在大功率系统中存在高压摆率的不利影响。随着更多电流流经 FET 和 VDS 电压以更快的速度进行转换,MOSFET 的固有电容耦合以及寄生 LC 谐振的影响会增加。

  如图 3-1 所示,栅极信号上升沿的高频分量(更重要的是,穿过米勒区域的上升 VDS 信号)会导致电流流到另一个 FET 的本征电容器上。该信号通过固有的栅极至漏极或栅极至源极电容器耦合,因为电容器在较高频率下具有较低的阻抗。如果这些耦合信号足够高,它们可能会超过电机驱动器的绝对最大额定值,或者打开一相内的低侧和高侧 FET,从而在电流绕过电机并从 VDRAIN 到 GND 流过直接路径时导致发生击穿。

  由于 CGD 耦合,MOSFET 在导通之前具有最大压摆率限制。这意味着如果压摆率太高,即使栅极直接短接至源极,MOSFET 也会导通。在考虑栅极驱动器下拉强度和栅极路径上的寄生电感时,这会在导致意外导通之前降低可能的最大压摆率。

  既然了解了栅极电流过多产生的影响,就必须开发调整栅极电流的方法,并且必须推导出给定系统的栅极电流计算法。

  栅极电流或 IDRIVE 在 FET 的开关特性中发挥着重大的作用,因此需要使用能够调整栅极电流的方法。

  在大多数栅极驱动器器件中,栅极驱动拉电流和灌电流(即上拉和下拉)值可在数据表中找到。在某些器件中,该值在内部是固定的,对于给定的 FET,输出电流能力远大于计算出的 IDRIVE。

  添加外部串联栅极电阻以控制施加的栅极电压的压摆率并降低施加到 FET 栅极的峰值电流。这类似于 RC 滤波器:R 是栅极电阻器,C 是 MOSFET 的固有电容。为了加强控制,可以并联另一个栅极电阻器和二极管(如果设计人员想要分别控制灌电流和拉电流),如图 3-2 中所示。

  MOSFET 参数、系统电压和电路板寄生参数都会影响最终的压摆。


杏彩体育网页 上一篇:不同电压和功率等级的三菱电机SiC功率器件介绍 下一篇:如何根据电机功率选择合适的空开、接触器和电线?
技术支持: 商易网络 | 管理登录